web-dev-qa-db-de.com

Wavelet-Transformation in openCV

hat jemand versucht, DWT in opencv oder in C++ zu implementieren? Ich habe ältere Beiträge zu diesem Thema gesehen und fand sie nicht für mich nützlich, da ich aufgrund der Wavelet-Transformation einen Näherungskoeffizienten und Details benötige.

Ich habe versucht, dies ( http://wavelet2d.sourceforge.net/ ) zu meinem Projekt hinzuzufügen, aber es funktioniert nicht so wie geplant.

Und das ist zu einfach, denn als Ergebnis brauche ich einen Näherungskoeffizienten und Details:

void haar1(float *vec, int n, int w)
{
int i=0;
float *vecp = new float[n];
for(i=0;i<n;i++)
    vecp[i] = 0;

    w/=2;
    for(i=0;i<w;i++)
    {
        vecp[i] = (vec[2*i] + vec[2*i+1])/sqrt(2.0);
        vecp[i+w] = (vec[2*i] - vec[2*i+1])/sqrt(2.0);
    }

    for(i=0;i<(w*2);i++)
            vec[i] = vecp[i];

        delete [] vecp;
}
void haar2(float **matrix, int rows, int cols)
{
    float *temp_row = new float[cols];
    float *temp_col = new float[rows];

    int i=0,j=0;
    int w = cols, h=rows;
while(w>1 || h>1)
{
    if(w>1)
    {
        for(i=0;i<h;i++)
        {
            for(j=0;j<cols;j++)
                temp_row[j] = matrix[i][j];

            haar1(temp_row,cols,w);

            for(j=0;j<cols;j++)
                matrix[i][j] = temp_row[j];
        }
    }

    if(h>1)
    {
        for(i=0;i<w;i++)
        {
            for(j=0;j<rows;j++)
                temp_col[j] = matrix[j][i];
            haar1(temp_col, rows, h);
            for(j=0;j<rows;j++)
                matrix[j][i] = temp_col[j];
        }
    }

    if(w>1)
        w/=2;
    if(h>1)
        h/=2;
}

    delete [] temp_row;
    delete [] temp_col;
}

Kann mir jemand helfen, das in C++ implementierte dwt zu finden, oder mir zeigen, wie ich aus den obigen Code-Koeffizienten extrahieren kann. Vielen Dank

18
la lluvia

Hier ist die direkte und inverse Haar Wavelet-Transformation (zur Filterung):

#include "opencv2/opencv.hpp"
#include <iostream>
#include <vector>
#include <stdio.h>

using namespace cv;
using namespace std;

// Filter type
#define NONE 0  // no filter
#define HARD 1  // hard shrinkage
#define SOFT 2  // soft shrinkage
#define GARROT 3  // garrot filter
//--------------------------------
// signum
//--------------------------------
float sgn(float x)
{
    float res=0;
    if(x==0)
    {
        res=0;
    }
    if(x>0)
    {
        res=1;
    }
    if(x<0)
    {
        res=-1;
    }
    return res;
}
//--------------------------------
// Soft shrinkage
//--------------------------------
float soft_shrink(float d,float T)
{
    float res;
    if(fabs(d)>T)
    {
        res=sgn(d)*(fabs(d)-T);
    }
    else
    {
        res=0;
    }

    return res;
}
//--------------------------------
// Hard shrinkage
//--------------------------------
float hard_shrink(float d,float T)
{
    float res;
    if(fabs(d)>T)
    {
        res=d;
    }
    else
    {
        res=0;
    }

    return res;
}
//--------------------------------
// Garrot shrinkage
//--------------------------------
float Garrot_shrink(float d,float T)
{
    float res;
    if(fabs(d)>T)
    {
        res=d-((T*T)/d);
    }
    else
    {
        res=0;
    }

    return res;
}
//--------------------------------
// Wavelet transform
//--------------------------------
static void cvHaarWavelet(Mat &src,Mat &dst,int NIter)
{
    float c,dh,dv,dd;
    assert( src.type() == CV_32FC1 );
    assert( dst.type() == CV_32FC1 );
    int width = src.cols;
    int height = src.rows;
    for (int k=0;k<NIter;k++) 
    {
        for (int y=0;y<(height>>(k+1));y++)
        {
            for (int x=0; x<(width>>(k+1));x++)
            {
                c=(src.at<float>(2*y,2*x)+src.at<float>(2*y,2*x+1)+src.at<float>(2*y+1,2*x)+src.at<float>(2*y+1,2*x+1))*0.5;
                dst.at<float>(y,x)=c;

                dh=(src.at<float>(2*y,2*x)+src.at<float>(2*y+1,2*x)-src.at<float>(2*y,2*x+1)-src.at<float>(2*y+1,2*x+1))*0.5;
                dst.at<float>(y,x+(width>>(k+1)))=dh;

                dv=(src.at<float>(2*y,2*x)+src.at<float>(2*y,2*x+1)-src.at<float>(2*y+1,2*x)-src.at<float>(2*y+1,2*x+1))*0.5;
                dst.at<float>(y+(height>>(k+1)),x)=dv;

                dd=(src.at<float>(2*y,2*x)-src.at<float>(2*y,2*x+1)-src.at<float>(2*y+1,2*x)+src.at<float>(2*y+1,2*x+1))*0.5;
                dst.at<float>(y+(height>>(k+1)),x+(width>>(k+1)))=dd;
            }
        }
        dst.copyTo(src);
    }   
}
//--------------------------------
//Inverse wavelet transform
//--------------------------------
static void cvInvHaarWavelet(Mat &src,Mat &dst,int NIter, int SHRINKAGE_TYPE=0, float SHRINKAGE_T=50)
{
    float c,dh,dv,dd;
    assert( src.type() == CV_32FC1 );
    assert( dst.type() == CV_32FC1 );
    int width = src.cols;
    int height = src.rows;
    //--------------------------------
    // NIter - number of iterations 
    //--------------------------------
    for (int k=NIter;k>0;k--) 
    {
        for (int y=0;y<(height>>k);y++)
        {
            for (int x=0; x<(width>>k);x++)
            {
                c=src.at<float>(y,x);
                dh=src.at<float>(y,x+(width>>k));
                dv=src.at<float>(y+(height>>k),x);
                dd=src.at<float>(y+(height>>k),x+(width>>k));

               // (shrinkage)
                switch(SHRINKAGE_TYPE)
                {
                case HARD:
                    dh=hard_shrink(dh,SHRINKAGE_T);
                    dv=hard_shrink(dv,SHRINKAGE_T);
                    dd=hard_shrink(dd,SHRINKAGE_T);
                    break;
                case SOFT:
                    dh=soft_shrink(dh,SHRINKAGE_T);
                    dv=soft_shrink(dv,SHRINKAGE_T);
                    dd=soft_shrink(dd,SHRINKAGE_T);
                    break;
                case GARROT:
                    dh=Garrot_shrink(dh,SHRINKAGE_T);
                    dv=Garrot_shrink(dv,SHRINKAGE_T);
                    dd=Garrot_shrink(dd,SHRINKAGE_T);
                    break;
                }

                //-------------------
                dst.at<float>(y*2,x*2)=0.5*(c+dh+dv+dd);
                dst.at<float>(y*2,x*2+1)=0.5*(c-dh+dv-dd);
                dst.at<float>(y*2+1,x*2)=0.5*(c+dh-dv-dd);
                dst.at<float>(y*2+1,x*2+1)=0.5*(c-dh-dv+dd);            
            }
        }
        Mat C=src(Rect(0,0,width>>(k-1),height>>(k-1)));
        Mat D=dst(Rect(0,0,width>>(k-1),height>>(k-1)));
        D.copyTo(C);
    }   
}
//--------------------------------
//
//--------------------------------
int process(VideoCapture& capture)
{
    int n = 0;
    const int NIter=4;
    char filename[200];
    string window_name = "video | q or esc to quit";
    cout << "press space to save a picture. q or esc to quit" << endl;
    namedWindow(window_name, CV_WINDOW_KEEPRATIO); //resizable window;
    Mat frame;
    capture >> frame;

    Mat GrayFrame=Mat(frame.rows, frame.cols, CV_8UC1);
    Mat Src=Mat(frame.rows, frame.cols, CV_32FC1);
    Mat Dst=Mat(frame.rows, frame.cols, CV_32FC1);
    Mat Temp=Mat(frame.rows, frame.cols, CV_32FC1);
    Mat Filtered=Mat(frame.rows, frame.cols, CV_32FC1);
    for (;;) 
    {
        Dst=0;
        capture >> frame;
        if (frame.empty()) continue;
        cvtColor(frame, GrayFrame, CV_BGR2GRAY);
        GrayFrame.convertTo(Src,CV_32FC1);
        cvHaarWavelet(Src,Dst,NIter);

        Dst.copyTo(Temp);

        cvInvHaarWavelet(Temp,Filtered,NIter,GARROT,30);

        imshow(window_name, frame);

        double M=0,m=0;
        //----------------------------------------------------
        // Normalization to 0-1 range (for visualization)
        //----------------------------------------------------
        minMaxLoc(Dst,&m,&M);
        if((M-m)>0) {Dst=Dst*(1.0/(M-m))-m/(M-m);}
        imshow("Coeff", Dst);

        minMaxLoc(Filtered,&m,&M);
        if((M-m)>0) {Filtered=Filtered*(1.0/(M-m))-m/(M-m);}        
        imshow("Filtered", Filtered);

        char key = (char)waitKey(5);
        switch (key) 
        {
        case 'q':
        case 'Q':
        case 27: //escape key
            return 0;
        case ' ': //Save an image
            sprintf(filename,"filename%.3d.jpg",n++);
            imwrite(filename,frame);
            cout << "Saved " << filename << endl;
            break;
        default:
            break;
        }
    }
    return 0;
}

int main(int ac, char** av) 
{
    VideoCapture capture(0);
    if (!capture.isOpened()) 
    {
        return 1;
    }
    return process(capture);
}
24
Andrey Smorodov

Hier ist eine weitere Implementierung der Wavelet-Transformation in OpenCV aus Mahavir :

            #include <opencv2\highgui\highgui.hpp>
            #include <opencv2\core\core.hpp>
            #include <opencv2\core\mat.hpp>
            #include <opencv2\imgproc\imgproc.hpp>
            #include<iostream>
            #include<math.h>
            #include<conio.h>
            using namespace std;
            using namespace cv;

            class image
            {
            public:
                Mat im,im1,im2,im3,im4,im5,im6,temp,im11,im12,im13,im14,imi,imd,imr;
                float a,b,c,d;
                int getim();
            };

            int image::getim()
            {
                im=imread("lena.jpg",0); //Load image in Gray Scale
                imi=Mat::zeros(im.rows,im.cols,CV_8U);
                im.copyTo(imi);

                im.convertTo(im,CV_32F,1.0,0.0);
                im1=Mat::zeros(im.rows/2,im.cols,CV_32F);
                im2=Mat::zeros(im.rows/2,im.cols,CV_32F);
                im3=Mat::zeros(im.rows/2,im.cols/2,CV_32F);
                im4=Mat::zeros(im.rows/2,im.cols/2,CV_32F);
                im5=Mat::zeros(im.rows/2,im.cols/2,CV_32F);
                im6=Mat::zeros(im.rows/2,im.cols/2,CV_32F);

                //--------------Decomposition-------------------

                for(int rcnt=0;rcnt<im.rows;rcnt+=2)
                {
                    for(int ccnt=0;ccnt<im.cols;ccnt++)
                    {

                        a=im.at<float>(rcnt,ccnt);
                        b=im.at<float>(rcnt+1,ccnt);
                        c=(a+b)*0.707;
                        d=(a-b)*0.707;
                        int _rcnt=rcnt/2;
                        im1.at<float>(_rcnt,ccnt)=c;
                        im2.at<float>(_rcnt,ccnt)=d;
                    }
                }

                for(int rcnt=0;rcnt<im.rows/2;rcnt++)
                {
                    for(int ccnt=0;ccnt<im.cols;ccnt+=2)
                    {

                        a=im1.at<float>(rcnt,ccnt);
                        b=im1.at<float>(rcnt,ccnt+1);
                        c=(a+b)*0.707;
                        d=(a-b)*0.707;
                        int _ccnt=ccnt/2;
                        im3.at<float>(rcnt,_ccnt)=c;
                        im4.at<float>(rcnt,_ccnt)=d;
                    }
                }

                for(int rcnt=0;rcnt<im.rows/2;rcnt++)
                {
                    for(int ccnt=0;ccnt<im.cols;ccnt+=2)
                    {

                        a=im2.at<float>(rcnt,ccnt);
                        b=im2.at<float>(rcnt,ccnt+1);
                        c=(a+b)*0.707;
                        d=(a-b)*0.707;
                        int _ccnt=ccnt/2;
                        im5.at<float>(rcnt,_ccnt)=c;
                        im6.at<float>(rcnt,_ccnt)=d;
                    }
                }

                imr=Mat::zeros(256,256,CV_32F);
                imd=Mat::zeros(256,256,CV_32F);
                im3.copyTo(imd(Rect(0,0,128,128)));
                im4.copyTo(imd(Rect(0,127,128,128)));
                im5.copyTo(imd(Rect(127,0,128,128)));
                im6.copyTo(imd(Rect(127,127,128,128)));


                //---------------------------------Reconstruction-------------------------------------

                im11=Mat::zeros(im.rows/2,im.cols,CV_32F);
                im12=Mat::zeros(im.rows/2,im.cols,CV_32F);
                im13=Mat::zeros(im.rows/2,im.cols,CV_32F);
                im14=Mat::zeros(im.rows/2,im.cols,CV_32F);

                for(int rcnt=0;rcnt<im.rows/2;rcnt++)
                {
                    for(int ccnt=0;ccnt<im.cols/2;ccnt++)
                    {
                        int _ccnt=ccnt*2;
                        im11.at<float>(rcnt,_ccnt)=im3.at<float>(rcnt,ccnt);     //Upsampling of stage I
                        im12.at<float>(rcnt,_ccnt)=im4.at<float>(rcnt,ccnt);
                        im13.at<float>(rcnt,_ccnt)=im5.at<float>(rcnt,ccnt);
                        im14.at<float>(rcnt,_ccnt)=im6.at<float>(rcnt,ccnt);
                    }
                }


                for(int rcnt=0;rcnt<im.rows/2;rcnt++)
                {
                    for(int ccnt=0;ccnt<im.cols;ccnt+=2)
                    {

                        a=im11.at<float>(rcnt,ccnt);
                        b=im12.at<float>(rcnt,ccnt);
                        c=(a+b)*0.707;
                        im11.at<float>(rcnt,ccnt)=c;
                        d=(a-b)*0.707;                           //Filtering at Stage I
                        im11.at<float>(rcnt,ccnt+1)=d;
                        a=im13.at<float>(rcnt,ccnt);
                        b=im14.at<float>(rcnt,ccnt);
                        c=(a+b)*0.707;
                        im13.at<float>(rcnt,ccnt)=c;
                        d=(a-b)*0.707;
                        im13.at<float>(rcnt,ccnt+1)=d;
                    }
                }

                temp=Mat::zeros(im.rows,im.cols,CV_32F);

                for(int rcnt=0;rcnt<im.rows/2;rcnt++)
                {
                    for(int ccnt=0;ccnt<im.cols;ccnt++)
                    {

                        int _rcnt=rcnt*2;
                        imr.at<float>(_rcnt,ccnt)=im11.at<float>(rcnt,ccnt);     //Upsampling at stage II
                        temp.at<float>(_rcnt,ccnt)=im13.at<float>(rcnt,ccnt); 
                    }
                }

                for(int rcnt=0;rcnt<im.rows;rcnt+=2)
                {
                    for(int ccnt=0;ccnt<im.cols;ccnt++)
                    {

                        a=imr.at<float>(rcnt,ccnt);
                        b=temp.at<float>(rcnt,ccnt);
                        c=(a+b)*0.707;
                        imr.at<float>(rcnt,ccnt)=c;                                      //Filtering at Stage II
                        d=(a-b)*0.707;
                        imr.at<float>(rcnt+1,ccnt)=d;
                    }
                }

                imd.convertTo(imd,CV_8U);
                namedWindow("Input Image",1);
                imshow("Input Image",imi);
                namedWindow("Wavelet Decomposition",1);
                imshow("Wavelet Decomposition",imd);
                imr.convertTo(imr,CV_8U);
                namedWindow("Wavelet Reconstruction",1);
                imshow("Wavelet Reconstruction",imr);
                waitKey(0);
                return 0;
            }

            int main()
            {
                image my;
                my.getim();
                return 0;
            }

Hoffe, jemand findet es nützlich!

6
la lluvia

Ich sehe, dass es sehr wenige Codebeispiele für Wavelet in Java gibt, insbesondere wenn Sie openCV verwenden. Ich musste Wavelet in Java mit openCV verwenden, und ich verwendete den C-Code von @la luvia und konvertierte nach Java.

Bei der Übersetzung des Codes gab es viele Schwierigkeiten, da sich die openCV-Methoden und deren Verwendung stark unterschieden. Dieses Buch hat mir auch dabei sehr geholfen.

Ich hoffe, dieser Code und das Buch geben einen Einblick in die Verwendung der Bibliothek und einige Unterschiede zwischen C und Java.

Hier ist der Code:

import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;

public class Wavelet {

    //Imperative in Java
    static{
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
    }

    String pathname = "C:/Users/user/img096";


    public static void main(String[] args) {
        Wavelet wavelet = new Wavelet();
        wavelet.applyHaarFoward();
        wavelet.applyHaarReverse();

        Imgcodecs.imwrite(wavelet.pathname+"imi.jpg", wavelet.imi);
        Imgcodecs.imwrite(wavelet.pathname+"imd.jpg", wavelet.imd);
        Imgcodecs.imwrite(wavelet.pathname+"imr.jpg", wavelet.imr);
    }

    Mat im,im1,im2,im3,im4,im5,im6,temp,im11,im12,im13,im14,imi,imd,imr;
    float a,b,c,d;

    private void applyHaarFoward(){
        try{
            im = Imgcodecs.imread(pathname+".jpg", 0);
            imi = new Mat(im.rows(), im.cols(), CvType.CV_8U);
            im.copyTo(imi);

            //in CvType. If the number of channels is omitted, it evaluates to 1. 
            im.convertTo(im, CvType.CV_32F, 1.0, 0.0);
            im1 = new Mat(im.rows()/2, im.cols(), CvType.CV_32F);
            im2 = new Mat(im.rows()/2, im.cols(), CvType.CV_32F);

            im3 = new Mat(im.rows()/2, im.cols()/2, CvType.CV_32F);
            im4 = new Mat(im.rows()/2, im.cols()/2, CvType.CV_32F);

            im5 = new Mat(im.rows()/2, im.cols()/2, CvType.CV_32F);
            im6 = new Mat(im.rows()/2, im.cols()/2, CvType.CV_32F);


            // ------------------- Decomposition ------------------- 

            for (int rcnt = 0; rcnt < im.rows(); rcnt+=2) {
                for (int ccnt = 0; ccnt < im.cols(); ccnt++) {
                    //even though the CvType is float with only one channel
                    //the method Mat.get() return a double array 
                    //with only one position, [0].
                    a = (float) im.get(rcnt, ccnt)[0];
                    b = (float) im.get(rcnt+1, ccnt)[0];
                    c = (float) ((a+b)*0.707);
                    d = (float) ((a-b)*0.707);
                    int _rcnt= rcnt/2;
                    im1.put(_rcnt, ccnt, c);
                    im2.put(_rcnt, ccnt, d);

                }
            }

            for (int rcnt = 0; rcnt < im.rows()/2; rcnt++) {
                for (int ccnt = 0; ccnt < im.cols() - 2; ccnt+=2) {
                    a = (float) im1.get(rcnt, ccnt)[0];
                    b = (float) im1.get(rcnt, ccnt+1)[0];
                    c = (float) ((a+b)*0.707);
                    d = (float) ((a-b)*0.707);
                    int _ccnt = ccnt/2;
                    im3.put(rcnt, _ccnt, c);
                    im4.put(rcnt, _ccnt, d);
                }
            }

            for (int rcnt = 0; rcnt < im.rows()/2; rcnt++) {
                for (int ccnt = 0; ccnt < im.cols() - 2; ccnt+=2) {
                    a = (float) im2.get(rcnt, ccnt)[0];
                    b = (float) im2.get(rcnt, ccnt+1)[0];
                    c = (float) ((a+b)*0.707);
                    d = (float) ((a-b)*0.707);
                    int _ccnt = ccnt/2;
                    im5.put(rcnt, _ccnt, c);
                    im6.put(rcnt, _ccnt, d);
                }
            }

            imr = Mat.zeros(im.rows(), im.cols(), CvType.CV_32F);//imr = Mat.zeros(512, 512, CvType.CV_32F);
            imd = Mat.zeros(512, 512, CvType.CV_32F);
            im3.copyTo(imd.adjustROI(0, 0, 256, 256));
            im4.copyTo(imd.adjustROI(0, 255, 256, 256));
            im5.copyTo(imd.adjustROI(255, 0, 256, 256));
            im6.copyTo(imd.adjustROI(255, 255, 256, 256));





        }catch(Exception ex){
            System.err.println(ex.getLocalizedMessage());
            ex.printStackTrace();
        }
    }

    private void applyHaarReverse(){
        // ------------------- Reconstruction ------------------- 
                im11 = Mat.zeros(im.rows()/2, im.cols(), CvType.CV_32F);
                im12 = Mat.zeros(im.rows()/2, im.cols(), CvType.CV_32F);
                im13 = Mat.zeros(im.rows()/2, im.cols(), CvType.CV_32F);
                im14 = Mat.zeros(im.rows()/2, im.cols(), CvType.CV_32F);

                for (int rcnt = 0; rcnt < im.rows()/2; rcnt++) {
                    for (int ccnt = 0; ccnt < im.cols()/2; ccnt++) {
                        int _ccnt  = ccnt*2;
                        im11.put(rcnt, _ccnt, im3.get(rcnt, ccnt));
                        im12.put(rcnt, _ccnt, im4.get(rcnt, ccnt));
                        im13.put(rcnt, _ccnt, im5.get(rcnt, ccnt));
                        im14.put(rcnt, _ccnt, im6.get(rcnt, ccnt));
                    }
                }

                for (int rcnt = 0; rcnt < im.rows()/2; rcnt++) {
                    for (int ccnt = 0; ccnt < im.cols() - 2; ccnt+=2) {
                        a = (float) im11.get(rcnt, ccnt)[0];
                        b = (float) im12.get(rcnt, ccnt)[0];
                        c = (float) ((a+b)*0.707);
                        im11.put(rcnt, ccnt, c);
                        d = (float) ((a-b)*0.707);
                        im11.put(rcnt, ccnt+1, d);

                        a = (float) im13.get(rcnt, ccnt)[0];
                        b = (float) im14.get(rcnt, ccnt)[0];
                        c = (float) ((a+b)*0.707);
                        im13.put(rcnt, ccnt, c);
                        d = (float) ((a-b)*0.707);
                        im13.put(rcnt, ccnt+1, d);
                    }
                }

                temp = Mat.zeros(im.rows(), im.cols(), CvType.CV_32F);

                for (int rcnt = 0; rcnt < im.rows()/2; rcnt++) {
                    for (int ccnt = 0; ccnt < im.cols(); ccnt++) {
                        int _rcnt = rcnt*2;
                        imr.put(_rcnt, ccnt, im11.get(rcnt, ccnt));
                        temp.put(_rcnt, ccnt, im13.get(rcnt, ccnt));
                    }
                }


                for (int rcnt = 0; rcnt < im.rows()-2; rcnt+=2) {
                    for (int ccnt = 0; ccnt < im.cols(); ccnt++) {
                        a = (float) imr.get(rcnt, ccnt)[0];
                        b = (float) temp.get(rcnt, ccnt)[0];
                        c = (float) ((a+b)*0.707);
                        imr.put(rcnt, ccnt, c);
                        d = (float) ((a-b)*0.707);
                        imr.put(rcnt+1, ccnt, d);
                    }
                }

    }
}

Ich hoffe es ist nützlich.

1
RochaRF

Suggestion: Ich schlage nicht vor, dwt von Grund auf neu zu implementieren. Es ist sehr schwierig, Ihre Anforderungen zu erfüllen. Wenn Sie wirklich die cpp-Version in Ihrem Job benötigen, empfehle ich, PyWavelets zu verwenden, dessen grundlegende Funktionen von dwt in C implementiert sind, sodass Sie sie problemlos in Ihr Programm migrieren können. Ansonsten können Sie Ihre Gedanken auch zuerst mit Python überprüfen, anstatt unnötige Anstrengungen zu riskieren.


Hier ist eine meiner Implementierungen von dwt , die viele Arten von Wavelet-Filtern unterstützen. Es funktioniert zwar, funktioniert aber nicht gut. Mit zunehmendem Level verschwimmt die Rekonstruktion immer mehr.

Wenn Sie den Wavelet-Filter ändern möchten, können Sie matlab (wfilters(wname)) verwenden oder aus PyWavelets-Quellcode auswählen. Außerdem gibt es die Regel zum Abrufen aller 4 Filter aus diesen Koeffizienten.

0
vacing