web-dev-qa-db-de.com

Wie lade ich ein Modell aus einer HDF5-Datei in Keras?

Wie lade ich ein Modell aus einer HDF5-Datei in Keras?

Was ich versucht habe:

model = Sequential()

model.add(Dense(64, input_dim=14, init='uniform'))
model.add(LeakyReLU(alpha=0.3))
model.add(BatchNormalization(epsilon=1e-06, mode=0, momentum=0.9, weights=None))
model.add(Dropout(0.5))

model.add(Dense(64, init='uniform'))
model.add(LeakyReLU(alpha=0.3))
model.add(BatchNormalization(epsilon=1e-06, mode=0, momentum=0.9, weights=None))
model.add(Dropout(0.5))

model.add(Dense(2, init='uniform'))
model.add(Activation('softmax'))


sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='binary_crossentropy', optimizer=sgd)

checkpointer = ModelCheckpoint(filepath="/weights.hdf5", verbose=1, save_best_only=True)
model.fit(X_train, y_train, nb_Epoch=20, batch_size=16, show_accuracy=True, validation_split=0.2, verbose = 2, callbacks=[checkpointer])

Mit dem obigen Code wird das beste Modell erfolgreich in einer Datei mit dem Namen weight.hdf5 gespeichert. Was ich tun möchte, ist dann das Modell zu laden. Der folgende Code zeigt, wie ich es versucht habe:

model2 = Sequential()
model2.load_weights("/Users/Desktop/SquareSpace/weights.hdf5")

Dies ist der Fehler, den ich erhalte:

IndexError                                Traceback (most recent call last)
<ipython-input-101-ec968f9e95c5> in <module>()
      1 model2 = Sequential()
----> 2 model2.load_weights("/Users/Desktop/SquareSpace/weights.hdf5")

/Applications/anaconda/lib/python2.7/site-packages/keras/models.pyc in load_weights(self, filepath)
    582             g = f['layer_{}'.format(k)]
    583             weights = [g['param_{}'.format(p)] for p in range(g.attrs['nb_params'])]
--> 584             self.layers[k].set_weights(weights)
    585         f.close()
    586 

IndexError: list index out of range
67
pr338

load_weights Legt nur die Gewichte Ihres Netzwerks fest. Sie müssen die Architektur noch definieren, bevor Sie load_weights Aufrufen:

def create_model():
   model = Sequential()
   model.add(Dense(64, input_dim=14, init='uniform'))
   model.add(LeakyReLU(alpha=0.3))
   model.add(BatchNormalization(epsilon=1e-06, mode=0, momentum=0.9, weights=None))
   model.add(Dropout(0.5)) 
   model.add(Dense(64, init='uniform'))
   model.add(LeakyReLU(alpha=0.3))
   model.add(BatchNormalization(epsilon=1e-06, mode=0, momentum=0.9, weights=None))
   model.add(Dropout(0.5))
   model.add(Dense(2, init='uniform'))
   model.add(Activation('softmax'))
   return model

def train():
   model = create_model()
   sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
   model.compile(loss='binary_crossentropy', optimizer=sgd)

   checkpointer = ModelCheckpoint(filepath="/tmp/weights.hdf5", verbose=1, save_best_only=True)
   model.fit(X_train, y_train, nb_Epoch=20, batch_size=16, show_accuracy=True, validation_split=0.2, verbose=2, callbacks=[checkpointer])

def load_trained_model(weights_path):
   model = create_model()
   model.load_weights(weights_path)
61
Mikael Rousson

Wenn Sie das komplette Modell, nicht nur die Gewichte, in der HDF5-Datei gespeichert haben, ist dies ganz einfach

from keras.models import load_model
model = load_model('model.h5')
148
Martin Thoma

Im folgenden Beispielcode erfahren Sie, wie Sie ein grundlegendes Keras-Neural-Net-Modell erstellen, das Modell (JSON) und die Gewichte (HDF5) speichern und laden:

# create model
model = Sequential()
model.add(Dense(X.shape[1], input_dim=X.shape[1], activation='relu')) #Input Layer
model.add(Dense(X.shape[1], activation='relu')) #Hidden Layer
model.add(Dense(output_dim, activation='softmax')) #Output Layer

# Compile & Fit model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X,Y,nb_Epoch=5,batch_size=100,verbose=1)    

# serialize model to JSON
model_json = model.to_json()
with open("Data/model.json", "w") as json_file:
    json_file.write(simplejson.dumps(simplejson.loads(model_json), indent=4))

# serialize weights to HDF5
model.save_weights("Data/model.h5")
print("Saved model to disk")

# load json and create model
json_file = open('Data/model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)

# load weights into new model
loaded_model.load_weights("Data/model.h5")
print("Loaded model from disk")

# evaluate loaded model on test data 
# Define X_test & Y_test data first
loaded_model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
score = loaded_model.evaluate(X_test, Y_test, verbose=0)
print ("%s: %.2f%%" % (loaded_model.metrics_names[1], score[1]*100))
25
Inherited Geek

Laut offizieller Dokumentation https://keras.io/getting-started/faq/#how-can-i-install-hdf5-or-h5py-to-save-my-models-in-keras =

du kannst tun :

testen Sie zuerst, ob Sie h5py installiert haben, indem Sie das ausführen

importiere h5py

wenn Sie beim Importieren von h5py keine Fehler haben, können Sie Folgendes speichern:

from keras.models import load_model

model.save('my_model.h5')  # creates a HDF5 file 'my_model.h5'
del model  # deletes the existing model

# returns a compiled model
# identical to the previous one
model = load_model('my_model.h5')

Wenn Sie h5py installieren müssen http://docs.h5py.org/en/latest/build.html

3
Richardd

Das habe ich so gemacht

from keras.models import Sequential
from keras_contrib.losses import import crf_loss
from keras_contrib.metrics import crf_viterbi_accuracy

# To save model
model.save('my_model_01.hdf5')

# To load the model
custom_objects={'CRF': CRF,'crf_loss': crf_loss,'crf_viterbi_accuracy':crf_viterbi_accuracy}

# To load a persisted model that uses the CRF layer 
model1 = load_model("/home/abc/my_model_01.hdf5", custom_objects = custom_objects)
0